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Monte Carlo simulations on the cubic lattice were used to investigate how the functions describing the 
concentration-dependent size of macromolecular solutes are affected when the usual, low-molecular-weight 
('monomeric') solvent is replaced by a chain-like 'polymeric' solvent. The simulations confirm the expected 
trend of coil shrinkage with the increase of solute volume fraction qk Remarkably, however, only a minor 
difference was found between the monomeric and polymeric solvents in the concentration dependence of 
the expansion coefficient ct. The double logarithmic plot of the function ~2 versus & in the range of 
semidilute solutions gives a value of exponent y ~ -0.24 for both types of solvents, which is in good accord 
with the arguments of the mean-field and scaling theories. In contrast to the concentration dependence of 
~, the chain-like character of the solvent has a considerable effect on the variation of the expansion coefficient 

with the solvent quality given, for example, by the Z parameter. 
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I N T R O D U C T I O N  

Recent investigations of the concentration dependence of 
polymer chain dimensions in solution have focused 
on the integral description of the chain behaviour 
over the whole span of concentration, c, from the 
dilute to the semidilute and concentrated regimes. For  
thermodynamically good solvents, the following picture 
seems to be generally accepted. The flexible coil with the 
maximum degree of swelling at infinitely dilute solution 
is gradually compressed with the increase of polymer 
concentration in solution. In the limiting case when the 
volume fraction of the polymer ~b approaches unity, the 
mean dimensions of chains converge to their unperturbed 
value characteristic of the theta state. Consequently, the 
mean dimensions in the theta solvent should be 
independent of concentration. 

Such a description of the concentration behaviour was 
originally based on data obtained mainly in dilute 
solutions, where the expressions were derived I in the 
closed form or as a power series for the expansion 
coefficient ~2= (r2)/(r 2) as a function of concentration. 
Here ( r  2) and (r~)  are mean-square end-to-end distances 
of chains in the solvent and in the theta state, respectively. 
The related concept of the concentration-dependent 
effective hydrodynamic volume of the soft impenetrable 
coils proved to be extremely useful in the rationalization 
of the numerous equilibrium and transport properties of 
dilute solutions of flexible macromolecules 2'3. 

The mean-field and scaling theories have been 
developed to describe the behaviour of the chain 
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molecules in the semidilute and concentrated regimes. 
The scaling theory predicts universal relations for the 
chain dimensions as a function of c. For example, in 
semidilute solutions the reduction of chain dimension 
should be proportional to ~b -Cz~-1~/~3~-1), v being the 
Flory excluded-volume exponent, equal to 0.6 in good 
solvents 4. Similarly, some mean-field theories 5 provide 
the value of the expansion coefficient ~ as a function of 
the chain length, concentration and solvent quality 
throughout the concentration scale. The predictions of 
the mean-field theory 5 are similar to, but differ slightly 
in detail from, the results of the scaling theory. The general 
conclusions of both theories are fully supported by the 
experimental measurements of the radius of gyration Rg 
of macromolecules in good solvents by small-angle 
neutron scattering 6'~. 

The question of a macromolecular size in concentrated 
solution also represents an attractive opportunity for the 
application of Monte Carlo (MC) simulations on a 
lattice. The results of simulations carried out so 
far s-l° provide additional evidence for the change of 
coil size with concentration under various conditions. 
Computations to imitate situations that would be difficult 
or impossible to measure in laboratory experiments are 
particularly valuable; these include simulations of the 
chain dimensions in non-solvents s or of macromolecules 
confined in pores 11. Simulations are also useful in cases 
where no suitable theory of a phenomenon is available. 
This category includes the question of how concentration 
functions found for low-molecular-weight solvents are 
affected by the use of solvents with a chain-like 
('polymeric') character. A prominent example of such a 



system is the binary polymer mixture with a high 
concentration of one component ('polymeric solvent'). 

The related problem of chain dimensions in polymer 
blends has recently been addressed by MC simulations a2-16, 
Simulations of a single chain of polymer A embedded in 
a matrix of polymer B predicted t5'16 changes in the 
dimensions of the A-type chain as a function of the 
segment interaction energy. Similarly, in multiple chain 
systems of a polymer A dispersed in the matrix of a major 
component B, a marked expansion (up to 26%) of the 
minor chain component was observed 13 for the case of 
favourable interactions between the components of the 
mixture. In contrast, a study 14 that assumed unfavourable 
interactions between the mixture components reported a 
noticeable contraction in the dimensions of the minor 
chain component. These predictions of simulations are 
supported by observation iv of the positive and negative 
changes of the chain size relative to the theta dimensions 
by small-angle neutron scattering in several compatible 
and incompatible binary polymer mixtures. 

In this contribution based on MC simulations, we 
compare the concentration variation of coil expansion in 
a polymeric solvent to that in a system with an analogous 
'monomeric' solvent. The comparison should identify the 
effect of segment connectivity in solvent molecules on the 
concentration functions of the size of a macromolecular 
solute. The results show that the connectivity effect 
plays a minor role, the effect of solvent power being 
dominant in the concentration functions. On the 
contrary, the variation of the expansion coefficient ~ with 
intermolecular interactions is a sensitive function of the 
chain-like character of the solvent. 

EXPERIMENTAL 

Simulations were done on a simple cubic lattice 
with box length L= 22, following the procedure used 
previously12.13. Simulations started from the system with 
484 chains, each of length NL=20 segments, which 
occupied 90.9% of the lattice points, the rest being void. 
The multichain system was equilibrated by 6× 107 
reptation trial moves under athermal conditions, i.e. 
assuming only the intra- and intermolecular excluded 
volume based on site occupancy. From this point, the 
procedure was differentiated for the systems with 
monomer (M) and polymer (P) solvents. 

In simulations with the P solvent, the assembly of 484 
chains was divided randomly into components A (solute) 
and B (solvent) in a ratio representing the preset 
composition of the mixture. The chain lengths of solute 
(NL) and of solvent (Ns) were assumed to be identical. 
Various states of the system were simulated by variations 
of the volume fraction q5 of the polymer solute (voids are 
not included in ~b) and of the reduced intersegmental 
nearest-neighbour interaction energy e=d/kT. A zero 
value of e corresponds to an athermal system, whereas 
good solvents, featuring attraction between segments of 
solute and solvents, are characterized by negative values 
ofe. The number of reptation trial moves needed to ensure 
proper statistics was kept within the range (1 2.2)× 108 
attempts, and the moves were distributed over the whole 
volume of the mixture. 

In the system with M solvent, after division of the 
chains into types A and B, chains of type B were 
eliminated from the lattice and were replaced by 
monomers located in the vacant lattice points. Again, the 
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quality of solvent was controlled by the reduced 
nearest-neighbour interaction energy ec between the chain 
segments and the surrounding sites occupied by M 
solvent. The energy Ofec was converted to e by multiplying 
by a factor 0.909, to take into account the presence of 
voids in the lattice and to ensure proper comparison with 
the P solvent. 

The assumed high density of the lattice occupation 
prevented the extension of simulations to the longer 
chains. In lattice computations there is always a trade-off 
between the occupational density and the mode of chain 
movement on one hand and the chain length on 
the other. Sometimes the longer chains are simulated 
by using, rather than physical movement on the 
lattice, a 'non-physical' mode of bond breaking and 
subsequent formation; however, this procedure results in 
a polydispersity of equilibrated chains. The reduction of 
occupational density in the system with P solvent would 
certainly enable the treatment of longer chains. However, 
as will be commented on later, such an approach may 
affect the resulting concentration functions of the coil 
dimensions. 

The mean-square end-to-end distance of the solute 
chains ( r  2 )  and the average number of intermolecular 
contacts per chain NAB w e r e  evaluated. The value of 
28.90, obtained previously 13 for the athermal mixture, 
was used for the reference unperturbed dimensions (r 2) 
in expressing the expansion coefficient ~ of the solute 
chains. 

RESULTS AND DISCUSSION 

Variation of expansion coefficient with concentration 
The effect of concentration on the expansion coefficient 

c~ will be analysed first. The variation of c~ with the volume 
fraction q~ of solute is plotted in Figure I for good solvents 
of the M and P type with interaction energy ~=-0 .5 .  
Both curves are very similar; the expansion coefficient 
decreases with increasing concentration of the solute. The 
choice of less favourable interaction energy ~=-0 .2 ,  
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Figure 1 Variation of the expansion coefficient c~ with the volume 
fraction of the solute polymer q~ for M solvents with e=  -0 .5  (x) ,  
e = - 0 . 2  (A) and for the P solvent with e = - 0 . 5  (0);  ©, chain 
dimensions of the molecules of the P solvent. Since in a polymer blend 
Ns=NL, a symmetrical extension of curves relative to the l:l 
composition is shown 
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Figure 2 Plot of the number  of intermolecular contacts of segments 
per chain NAB versus the solute volume fraction ~b. M solvents: 
O, s =  -0 .5 ;  A ,  e =  -0 .2 .  P solvent: O,  e =  - 0 . 5  

approximating a moderately good solvent, results, as 
expected, in the reduction of the coil expansion, the 
overall shape of the curve being unaffected. To complete 
the picture, Figure 1 also shows the variation of the 
solvent chain dimensions, i.e. of component B in the 
polymer mixture t3. Solvent molecules expand from their 
originally unperturbed dimensions with the gradually 
diminishing concentration of solvent in the mixture. 
Owing to the identical chain lengths of the solvent and 
solute, both curves for the P system in Figure 1 are 
symmetrical and cross at the point of 1:1 composition of 
the mixture. 

The number ofintersegmental contacts per solute chain 
NAB , a n  indicator of solvation of the solute, is plotted in 
Figure 2 for the same systems as in Figure 1. We see that 
at concentrations ~ < 0.5 and for the identical attraction 
energy e = - 0 . 5 ,  the solute macromolecules are better 
solvated by the P solvent than by the M solvent. 
This rather surprising observation is also reflected in 
Figure 1 by the higher expansion coefficient ~ in the 
P solvent relative to the M solvent in about the same 
range of ~b. Apparently, the solute-solvent attraction is 
high enough to secure the maximum attainable saturation 
of the solvation points. The solvation in the P solvent 
may be enhanced by the partial alignment of solute and 
solvent chains (similar to complexation) due to the solvent 
chain connectivity. It appears that the effect of solvation 
is dominant at concentrations ~b<0.5. At higher solute 
concentrations, interactions with the solvent are less 
abundant and the effect of entanglements sets in. For the 
M solvent, a stronger expansion is allowed than for the 
P solvent which, by forming entanglements with solute, 
screens out the excluded volume in solute chains. These 
two effects probably lead to inversion of the behaviour 
of the P and M solvents in the crossover region at about 
~b =0.5. It should be noted that the concentration of the 
first coil overlap in these systems of relatively short 
chains is ~b* =0.23 and entanglements set in for higher 
concentrations. The crossover points, where the coil 
expansion and the solvation become larger for the M 

solvent, are located at slightly different values of ~b in 
Figures 1 and 2, presumably because the chain swelling 
is governed by intrachain self-avoiding repulsion as well 
as by intermolecular interactions. It is instructive to 
realize that the curves for P and M solvents in Figures 1 
and 2 should meet for ~b = 1 (but not for ~b = 0). 

In order to compare the MC results with the 
predictions of polymer solution theories developed for 
the intermediate range of concentrations, the data from 
Figure I are replotted in Figure 3 in a double logarithmic 
representation. The function log ct versus log ~b, smooth 
and almost horizontal in the dilute solution, changes 
abruptly in the semidilute region and decreases linearly 
up to the limiting state of ~b = 1. As mentioned already, 
the scaling theory predicts 4 the reduction of chain 
swelling by the relation ~2= ~br, where in good solvents 

= - 0.25. Similar values of the exponent ? were reported 
from experimental measurements of the radius of gyration 
Rg by small-angle neutron scattering 6'7. In the model of 
soft impenetrable spheres 2 which can contract or expand 
but never overlap, the exponent 7 attainsS the value -2/3,  
the steepest possible slope. 

The linear portion of the MC curves in Figure 3 for 
good solvents with e = - 0.5 gives the exponent 7 = - 0.24, 
regardless of whether the P or M solvent is assumed. In 
the moderately good solvent with e = -0.2, the exponent 
7=-0.19.  All these values from the MC simulations 
conform very well with the scaling theory as well as with 
the mean-field theory 5 of the concentration effect. The 
theory s predicts the function log ~ versus log ~b to be of 
similar shape to that shown in Figure 3; moreover, the 
theory is able to account for the chain length dependence 
of the solute polymer. For a given quality of solvent, the 
increase in chain length should manifest itself in 
Figure 3 by the enhancement of the coefficient ~t and by 
the shift of the linear part of the curves to the left; 
consequently, the volume fraction where the unit value 
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Figure 3 Double logarithmic plot of the square of the expansion 
coefficient versus the solute volume fraction ~b for the polymer 
solute s = - 0 . 5  (A) and for the two M solvents e = - 0 . 5  (O) and 
e =  - 0 . 2  (0) .  - ' - ' ,  Smoothed experimental data for polyisoprene in 
hexadecane18; IS], experimental data 19 for a PI blend; - - - ,  scaling 
theory prediction for a bimodal chemically homogeneous  blend 19'23 
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of the expansion coefficient is reached, usually denoted 
as ¢**, is less than one. 

Most experimental studies of the concentration 
dependence of the chain size were conducted by 
measuring the radius of gyration, viscosity, diffusion 
coefficient, etc. The concentration dependence of (r2~ 
has so far been measured only by the method of dielectric 
spectroscopy refined by Adachi et al.1 s,19. Their resultsX 8 
for cis-polyisoprene (PI), with Mw~ l0 s in hexadecane, 
are replotted in Figure 3. Hexadecane corresponds 
partially to the notion of a chain-like solvent of 
moderately good quality; the Z parameter of this 
system 18 is 0.24, Owing to the much longer length of 
PI chains than MC chains, the linear part of the 
experimental curve in Figure 3 is shifted to a lower value 
of 4, and the reference coil swelling with ~ = 1 is reached 
at 4** =0.50, in accordance with the deductions of the 
mean-field theory 5. The slope of the experimental curve 
gives 7 = -0.31, a value higher than the maximum 
predicted by the scaling theory. This observation was 
interpreted by the authors TM by means of another variant 
of the mean-field theory 2° which further divides the 
semidilute region into two zones differing in power-law 
functional dependence on concentration. The slope 7 in 
the second (more concentrated) zone can be higher than 
the limit 7= -0.25 predicted by the scaling theory. 

Subsequently, using the same technique, the chain 
expansion was measured ~9 for PI with Mw = 1550. The 
results (Figure 3) show that the low-molecular-weight 
component acts as a marginally good solvent and 
therefore the high-molecular-weight component is in an 
expanded conformation. Three experimental points for 
this bimodal blend, located in the crossover concentration 
region, indicate that the concentration dependence of 
is much weaker than in the case of hexadecane solvent. 

Dependences of the chain dimensions on 4 similar to 
those in Figures 1-3 were observed in other MC 
simulations in good solvents 8'9. Studies of solvents 
corresponding to the unfavourable (positive) values of 
the energy s confirmed 8'9 that at first the chain 
dimensions in the theta state are independent of 4, and 
second that in non-solvents below the theta state, where 
chains assume the contracted conformation, a gradual 
expansion of the coils to the unperturbed dimensions 
takes place with an increase of 4. 

The results on the variation of the chain dimensions 
for the P solvent are inversely related to the appropriate 
choice of the concentration of voids in a lattice (see 
Experimental section). The introduction of voids changes 
the binary melt into an effectively ternary system, 
polymer A + polymer B + voids. In principle, the variation 
of the chain dimension with the volume fraction of voids 
in a ternary system should be similar to the concentration 
functions based on volume fractions (4) of polymer 
components only, of the type shown in Figure 3. 
Therefore, the selection of the concentration of voids is 
not necessarily trivial, and may affect some computed 
properties. An analysis of this questionable point in bulk 
polymer system simulations is so far completely absent 
from the literature. 

To minimize the possible influence of void concentration 
on the results in this and the related study t3, we have 
assumed a very low concentration (< 10%) of voids in 
simulations. Simulations in such dense systems are 
notoriously difficult, and to facilitate the computations 
we have worked with the effective concentration of voids 

Chain dimensions of solutes: P. Cifra and T. Bleha 

instead of with an explicit differentiation of the lattice 
sites occupied by the solvent monomers and by voids. 
As a next step, more time-consuming simulations, with 
the explicit identification of site occupation by the 
monomers or by voids, should be considered. However, 
such treatment will be complicated by the phenomenon 
of 'preferential solvation' of chains by the solvent 
monomers relative to voids. 

In the very dense system assumed in our simulations, 
the chain dimensions computed for 4 = 1  closely 
approach the unperturbed dimensions (r=~0 . The higher 
fraction of voids (40-60%) usually assumed in the 
simulation practice makes the treatment of polymer 
systems much more convenient. However, in that case, 
the chain dimensions (rZ)ref computed for 4 = 1 represent 
some reference value only, which could be expanded 
relative to (rZ)o because of the variation of coil size with 
the amount of voids in a lattice. The choice of a moderate 
concentration of voids in a lattice may be acceptable in 
studies of certain properties of bulk polymer systems, but 
it is prudent not to use such a procedure in the evaluation 
of the concentration functions of the chain dimensions. 

The MC results in Figures 1--3 are in overall agreement 
with concentration dependences available from the 
theory, MC simulations and measurements pertinent to 
the low-molecular-weight solvents. The inconspicuous 
influence of the polymer-like solvent on the concentration 
functions seen in Figures 1 3 is rather surprising. 
Evidently, the difference between the segments separated 
in the M solvent or interconnected in the P solvent plays 
only a minor role in the systems studied, where 
rather strong solute-solvent interaction was assumed. 
This may be connected with the fact that the lattice 
calculations do not take into account interactions of the 
solvent-solvent type, the free volume of the solvents and 
the other subtle differences between the M and P solvents. 
Unfortunately, apart from polymer blends 1~'19, no other 
experimental data for the concentration-dependent size 
of macromolecular solutes determined in polymer-like 
solvents seem to be available. 

Variation of or with solvent quality 
We next describe how the chain-like character of the 

solvent influences the dependence of coil swelling 
on solvent power. Figure 4 shows the number of 
intersegmental contacts NAn as a function of the reduced 
energy s in the region of good solvents. In the M solvent, 
the number of contacts (the degree of solvation) is affected 
only a little by the changing solvent power from the 
athermal to very good solvents, whereas in the P solvent 
a sharply increasing function is observed. The relative 
insensitivity of NAB to S also explains the proximity of 
curves in Figure 2 for the two M solvents. 

The differences in solvation behaviour between the M 
and P solvents are transferred into analogous functions 
of the expansion coefficients (Figure 5). The solvent power 
affects the coil expansion much more in the P solvent 
than in the M solvent. Figure 5 clearly shows that in 
the P solvent the solute chains exhibit unperturbed 
dimensions (~=1) in an athermal system at 4=0.114, 
whereas in the M solvent under the same conditions the 
coils are moderately expanded with ~ ~ 1.1. Because of 
the steeper dependence of the coil expansion, the P solvent 
matches the expansion coefficient in M solvents at s = 0.3, 
and above this value of e the coil swelling in the P solvent 
predominates. 
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Figure 4 Variation of the number ofintermolecular contacts per chain 
NAB with reduced intersegmental energy e for the P solvent with 
solute volume fraction ~b=0.114 (O) and for the M solvents with 
q~=0.027 (+), 0.114 (O) and 0.301 (~ )  
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Figure 5 Variation of the square of the expansion coefficient with 
intersegmental energy e for the P solvent with ~b=0.114 (0 )  and for 
the M solvents with ~b =0.027 (x),  0.114 (O) and 0.301 (A) 

It should be pointed out that only the region 
of attractive intersegmental energy was sampled in 
Figures 4 and 5. With the transition to positive values 
of e, a reduction of coil size to theta dimensions, and 
even below, takes place. This behaviour was observed 
for the positive e in MC simulations of polymer blends ~4, 
where the gradual contraction of the minor chain 
component was observed up to 85% of the theta 
dimensions in the limiting point of phase demixing. 

It would be expedient to know the analytical functions 
in order to calculate the effects of both concentration 
and solvent quality on the expansion coefficient. 
However, despite progress in the theoretical approach, 
no such expressions seem to be available for the wide 

range of concentrations and solvent quality. In dilute 
solutions, this type of relation 1-3 gives the solvent quality 
by the product A2M , where A 2 is the second virial 
coefficient and M is molecular weight. For the wide 
concentration range a relation was proposed21: 

~2 = 0.932(0.5 - Z)°25~b - 0.25 (1) 

but its validity is restricted to good solvents only. 
The double logarithmic plot of our results for the M 

solvents in a fashion complying with equation (1) does 
not bring the expected linear dependences (Figure 6). The 
Z parameter was estimated in this procedure using a 
simple relation Z= e(z-2), where z is the coordination 
number of a lattice (z=6 for a simple cubic lattice). 
Previous treatment 13 of the data for the expansion of the 
minority chain component in a polymer mixture by 
equation (1) yielded a straight line with a slope of 0.27 
(Figure 6). However, in the P solvent, a variant of 
equation (1) is more appropriate, where the term (0.5- Z) 
is replaced by [(1/2NL)--g]. Using this modification of 
equation (1), a non-linear curve is obtained for the P 
solvent with N L--- 20 (Figure 6). The power-law function 
q~-O.25 in equation (1) is approximately satisfied by our 
data, as shown by the analysis of Figure 3. Thus, the 
failure of equation (1) to fit the MC data may originate 
from the improper form of the interaction term. It is 
difficult to assess the degree to which the approximate 
conversion of e to the Z parameter contributes to this 
failure. In the lattice calculations of polymer blends 12, 
the linear proportionality between these two quantities 
was observed in the miscibility region. 

Scaling relations for the bimodal blends 
The universal analytical relation linking the expansion 

coefficient, the concentration and the solvent quality is 
still a challenge in the theory of polymer solutions. Since 
such relations are absent for the M solvent, their 
formulations for the P solvent will undoubtedly be an 
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Figure 6 Plot of the MC results according to equation (1) for the 
M solvents with ~b =0.027 ( x ), 0.114 (O) and 0.301 (O). The full lines 
correspond to the P solvent at q~=0.114: A, using equation (1); 
. ,  using a modified version of equation (1), see text 
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even more difficult task. As a first step in this direction, 
the scaling relations for some systems with a P solvent 
were presented 22 24. In the ternary system of the 
semidilute solution of a guest polymer in a mixture of a 
host polymer and a good solvent, power-law relations 
were established 22 for the radius of gyration as a function 
of the chain lengths of host and guest polymers, their 
concentration and the )~ parameter of the system. 

A binary system more directly related to our 
simulations, consisting of a polymer solute dissolved in 
a melt of shorter, chemically identical chains with variable 
chain length N s, was recently treated by the scaling 
theory 23'24. For this athermal system, the authors 23'24 
analysed the excluded volume of the guest solute chains 
of length N L. Chains longer than some threshold length, 
N * = N  2, are partially swollen due to the intrachain 
excluded volume repulsion, and their end-to-end distance 
scales as: 

r ~ aN3L/5 N s 1/5 (2) 

where a is a segment size and all numerical coefficients are 
omitted. In solute chains shorter than the threshold length 
N*, the screening of monomer-monomer interactions 
leads to partial deswelling, and solute chains behave as 
ideal with the unperturbed dimensions ro~-aN~/2. By 
introducing the asymmetry factor X=NL/Ns,  a simple 
proportionality can be deduced from the last two scaling 
relations: 

~2 -_ r2/r~ ~_ x2/5 (3) 

In contrast, starting from the classical mean-field 
expressions for dilute solutions, a relation was derived 19 
for the expansion coefficient in dilute athermal bimodal 
blends which in our notation reads: 

0~2 _~ X2/S N L  1/5 (4) 

The overlapping concentration (critical threshold), 
where the semidilute regime sets in, is in the scaling 
notation given by the expression ~*=NC4/SNas Is. In 
the semidilute regime, the scaling theory predicts 
the following proportionality 19'2a for the expansion 
coefficient of the high-molecular-weight component of 
the blend: 

~2 ~ (Ns4~)- 1,,4 (5) 

It can be seen from relation (5) that in the semidilute 
regime the solute chain expansion should be independent 
of the solute chain length. The scaling predictions of the 
concentration variation of chain expansion are shown 
schematically in Figure 3 by the dotted line, including 
the concentration regime where the solute chains of the 
blend assume the unperturbed dimensions. 

The simplified scaling analysis for a bimodal blend can 
be confronted qualitatively with our MC results. A major 
problem in such a comparison originates from the fact 
that in scaling arguments, because of the large disparity 
assumed between the chain length of both components 
(NL and Ns), an athermal system represents a good 
solvent, whereas in our MC simulations the good solvent 
is modelled by the attractive intersegmental energy e. In 
the dilute regime, the curves in Figure 5 for the M and 
P solvents at th = 0.114 represent, in our calculations, two 
extreme limits of the asymmetry factor x: 20 and 1, 
respectively. In the athermal system (e=0), the data in 
Figure 5 confirm the increase in the expansion coefficient 
with increasing x, assumed in equations (3) and (4); 
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however, the exponent of this proportionality cannot be 
evaluated. Instead of a discontinuous jump from an ideal 
to a partially swollen state at some critical value of the 
asymmetry factor x*, presumed 23'24 in the scaling 
arguments above, rather a gradual change of the 
coefficient a with increasing x can be expected. It should 
be stressed that the comparison of scaling and MC results 
should be restricted to the athermal system only; in the 
solvents with a rather high negative value of e the 
coefficient a becomes inversely proportional to x (cf. 
Figures 3 and 5). 

In the semidilute regime, the scaling relation (5) and 
MC data in Figure 3 are in harmony with respect to the 
slope of the concentration variation of :~, given by the 
exponent 7, even though the experimental data 19 for a 
PI blend (Figure 3) suggest a much lower value (in 
absolute terms) of the exponent 7. Both approaches 
concur that the slope (exponent 7) should be independent 
of the chain length of the solute. On the other hand, 
according to equation (5) the extent of coil swelling should 
be inversely proportional to the solvent chain length. 
Consequently, in an athermal system the expansion 
coefficient in the M solvent should be higher than in the 
P solvent. Accordingly, the curve for the P solvent in 
Figure 3 should be shifted (with the same slope) to the 
left relative to that for the M solvent, ~p being lower than 
~M and 4~** lower than ~b**. The actual location of curves 
from MC simulations shown in Figure 3 differs from 
these scaling predictions since it corresponds to the 
situation where a rather high intersegmental attraction 
is assumed. 
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